74 research outputs found

    Feasibility study of Korea biocluster with real estate perspectives

    Get PDF
    Thesis (S.M. in Real Estate Development)--Massachusetts Institute of Technology, Dept. of Architecture, Center for Real Estate, 2008.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (leaves 88-89).Globalization has created a dynamic and rapidly changing marketplace. A business must move quickly to capitalize on the changing environment. For example, many global biotechnology firms are seeking new geographical locations as part of their strategy to expand their business. Korea's biotechnology reputation and prospects as a potential site for biotech businesses is attracting increase attention. The Yeongjong Project is one choice. For the ongoing development of Korean bioclusters, this study will demonstrate potential and the attractiveness of Korea's biocluster sites, which may help international biotechnology firms relocate and reposition in Korea. Biotechnology is an umbrella term so this study identifies what the biotechnology and biotechnology industry are, as well as its characteristics and risks. Secondly, the biotechnology market will be analyzed both globally and domestically to understand the industry trend. This paper compares successful international bioclusters such as Tuas Medical Park in Singapore and University Park at MIT in the U.S, along with Korea's Wonju Medical Valley and Daedeok Techno Valley. This study explains different innovations and success factors, and characteristics of each cluster and whether the success factors are applicable to the Yeongjong Project. Finally, this thesis will identify the area and its characteristics suitable for a biocluster and propose appropriate product types through market feasibility.by Junghun Choi.S.M.in Real Estate Developmen

    WiDEVIEW: An UltraWideBand and Vision Dataset for Deciphering Pedestrian-Vehicle Interactions

    Full text link
    Robust and accurate tracking and localization of road users like pedestrians and cyclists is crucial to ensure safe and effective navigation of Autonomous Vehicles (AVs), particularly so in urban driving scenarios with complex vehicle-pedestrian interactions. Existing datasets that are useful to investigate vehicle-pedestrian interactions are mostly image-centric and thus vulnerable to vision failures. In this paper, we investigate Ultra-wideband (UWB) as an additional modality for road users' localization to enable a better understanding of vehicle-pedestrian interactions. We present WiDEVIEW, the first multimodal dataset that integrates LiDAR, three RGB cameras, GPS/IMU, and UWB sensors for capturing vehicle-pedestrian interactions in an urban autonomous driving scenario. Ground truth image annotations are provided in the form of 2D bounding boxes and the dataset is evaluated on standard 2D object detection and tracking algorithms. The feasibility of UWB is evaluated for typical traffic scenarios in both line-of-sight and non-line-of-sight conditions using LiDAR as ground truth. We establish that UWB range data has comparable accuracy with LiDAR with an error of 0.19 meters and reliable anchor-tag range data for up to 40 meters in line-of-sight conditions. UWB performance for non-line-of-sight conditions is subjective to the nature of the obstruction (trees vs. buildings). Further, we provide a qualitative analysis of UWB performance for scenarios susceptible to intermittent vision failures. The dataset can be downloaded via https://github.com/unmannedlab/UWB_Dataset

    Response of the primary auditory and non-auditory cortices to acoustic stimulation: A manganese-enhanced MRI study

    Get PDF
    Structural and functional features of various cerebral cortices have been extensively explored in neuroscience research. We used manganese-enhanced MRI, a non-invasive method for examining stimulus-dependent activity in the whole brain, to investigate the activity in the layers of primary cortices and sensory, such as auditory and olfactory, pathways under acoustic stimulation. Male Sprague-Dawley rats, either with or without exposure to auditory stimulation, were scanned before and 24-29 hour after systemic MnCl2 injection. Cortex linearization and layer-dependent signal extraction were subsequently performed for detecting layer-specific cortical activity. We found stimulus-dependent activity in the deep layers of the primary auditory cortex and the auditory pathways. The primary sensory and visual cortices also showed the enhanced activity, whereas the olfactory pathways did not. Further, we performed correlation analysis of the signal intensity ratios among different layers of each cortex, and compared the strength of correlations between with and without the auditory stimulation. In the primary auditory cortex, the correlation strength between left and right hemisphere showed a slight but not significant increase with the acoustic simulation, whereas, in the primary sensory and visual cortex, the correlation coefficients were significantly smaller. These results suggest the possibility that even though the primary auditory, sensory, and visual cortices showed enhanced activity to the auditory stimulation, these cortices had different associations for auditory processing in the brain network.open0

    Development of an Automatically Adjustable Colonoscope

    No full text

    Abnormal sensor detection using consistency index in accident situation

    No full text

    Development of a Segmental Bioelectrical Impedance Spectroscopy Device for Body Composition Measurement

    No full text
    Whole-body bioelectrical impedance analysis for measuring body composition has been well-explored but may not be sensitive enough to changes in the trunk compared to changes in the limbs. Measuring individual body segments can address this issue. A segmental bioelectrical impedance spectroscopy device (SBISD) was designed for body composition measurement and a prototype was implemented. Compensation was performed to adjust the measured values to correct for a phase difference at high frequencies and to counteract the hook effect when measuring the human body. The SBISD was used to measure five subjects and was compared against three existing analyzers. For most segmental measurements, the SBISD was within 10% of the R0 and R∞ values determined with a Bodystat Multiscan 5000 and an Impedimed SFB7. The impedance values from the third reference device, a Seca 514, differed significantly due to its eight-electrode measuring technique, meaning impedance measurements could not be compared directly

    Design of an Impedance-Controlled Hot Snare Polypectomy Device

    No full text
    This paper goes through the process of first designing a feedback system that allows for the measuring of impedance while using the hot snare polypectomy method. The electrosurgical unit used in this study was the Olympus PSD-30. After the impedance-controlled feedback system was completed, the device was tested under a range of power settings from 10 W–50 W. The test was performed ex vivo using porcine colon samples. Using the information gathered from these tests, a technique of determining the threshold of perforation and implementing a system to automatically stop the applied current from the PSD-30 was developed. The data showed that after an increase in impedance of 25% from that of the initially measured impedance, perforation ensued in the tissue samples. Using this information, the device was programmed to interrupt the PSD-30 at this threshold point. This final design was tested and proved able to automatically prevent the event of perforation from occurring, resulting in the ability to prevent serious complications
    corecore